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ABSTRACT

Q-space imaging is an emerging diffusion weighted MR

imaging technique to estimate molecular diffusion probability

density functions (PDF’s) without the need to assume a Gaus-

sian distribution. We present a robust M-estimator, Q-space

Estimation by Maximizing Rician Likelihood (QEMRL), for

diffusion PDF’s based on maximum likelihood. PDF’s are

modeled by constrained Gaussian mixtures. In QEMRL,

robust likelihood measures mitigate the impacts of imaging

artifacts. In simulation and in vivo human spinal cord, the

method improves reliability of estimated PDF’s and increases

tissue contrast. QEMRL enables more detailed exploration

of the PDF properties than prior approaches and may allow

acquisitions at higher spatial resolution.

Index Terms— q-space, probability, diffusion, magnetic

resonance imaging; maximum likelihood

1. INTRODUCTION

Q-space imaging is an analysis technique for diffusion

weighted (DW) magnetic resonance (MR) imaging that shows

great promise as a tool to study tissue microstructure [1]. As

with other DW imaging techniques, the Brownian motion of

water within a voxel is noninvasively inferred from signal at-

tenuations observed in the presence of sensitization gradients.

Rather than assuming a Gaussian distribution for the water

diffusion probability density function (PDF) as in diffusion

tensor imaging (DTI), q-space analyses experimentally de-

termine non-parametric PDF’s for single diffusion directions.

The PDF represents the probability that a spin (i.e., water

hydrogen) diffuses a particular distance from its initial posi-

tion during the DW time. To date, q-space studies reported in

the literature have used limited diffusion models to regularize

noisy data. These models make ad hoc assumptions and do

not accurately account for the properties of MR noise. This

study presents a robust M-estimator for estimating PDF’s

from q-space data that accounts for Rician distributed noise.
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This novel approach specifically addresses the joint likeli-

hood of all observations within a general non-parametric

model, denoted Q-space Estimation by Maximizing Rician

Likelihood (QEMRL).

Noise in magnitude MR data is well to know to be Rician

distributed and to introduce intensity bias at low SNR [2]. The

observed signal intensity (S) distribution is

p(S; S0, σ) =
S

σ2
e−

S2+S2
0

2σ2 I0

(
SS0

σ2

)
, (1)

where S0 is the noise free signal and σ is the standard de-

viation of the noise on the unobserved complex valued im-

ages. Maximum likelihood (ML) approaches for bias correc-

tion have been presented for scalar MR images [3]. Recently,

ML methods have been extended to estimate tensors in DTI

[4], but ML has not yet been applied to q-space imaging.

Rician noise distorts calculated PDF’s from GM (gray

matter) and WM (white matter) differently and, thus, reduces

tissue contrast. In q-space imaging, q is an experimental pa-

rameter that modulates signal attenuation related to diffusion.

In GM, the acquired signal at large q is highly attenuated

(indicating that diffusion is relatively unrestricted), so the

observed signal is substantially biased by Rician noise. The

bias in Fourier space leads to artifactual sharpening of the

calculated PDF (i.e., high pass filtering). Meanwhile, in WM,

the acquired signal at large q is less attenuated due to tight

restriction boundaries, so there is less bias and the PDF is

less distorted. Since the Rician noise introduces more PDF

sharpening in GM than WM, the calculated PDF’s for these

tissue types are more similar than they would be if calculated

from noise free data.

Prior approaches to q-space imaging have recognized that

using substantially biased observations has a detrimental im-

pact on the calculated results, but have not considered the

noise in a likelihood framework. Two compartment models

have been fit to limited datasets to reduce the impact of noise

and avoid complexities in calculated PDF’s [5]. For more

general q-space imaging, Assaf et al. replaced all observa-

tions below twice a noise level estimate with zero and extrap-

olated any non-zero signals with a bi-Gaussian [1]. Farrell et

al. calculated a “noise floor” and subtracted this level from the

observed signal and also extrapolated non-zero signals with a
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Fig. 1. In a general q-space experiment, data are observed

at regularly spaced q-values (left), which are transformed to

PDF’s (right). To improve reliability over direct calculations

(note ringing on data curve at right), data are typically fit with

a model. In QEMRL, the fitting process utilizes a maximum

likelihood model.

bi-Gaussian [6]. These level adjustment approaches can be

viewed as adaptive low-pass filters. The extrapolation step

uses prior parametric assumptions to increase apparent reso-

lution and reduce ringing. These methods partially address

the problem of sharpened PDF’s, but they are heuristics and

do not make optimal use of all available data.

The key principle of the new method is an explicit ac-

counting for the noise properties in the DW images that

constitute a q-space dataset. In simulation, we show that

QEMRL estimates PDF derived contrasts (e.g., mode proba-

bility, P0, full width at half maximum, FWHM, and the root

mean square displacement, RMSD) that are closer to their

true (i.e. noise-free) values. When applied to in vivo human

spinal cord dataset, QEMRL improves the reliability of PDF

estimation and increases tissue contrast. Finally, we present a

compact and intuitive visual representation of the information

obtained with the PDF, and discuss how robust estimation of

the PDF may aid the assessment of diffusion properties in

multiple sclerosis (MS) lesions.

2. METHODS

In q-space imaging, the Fourier transform of the diffusion

PDF is sampled through DW acquisitions with different dif-

fusion sensitizations (Fig. 1). The observed signal is

S(q) = S(0)
∫

pt(r) exp(i2πqr)dr ∼ F−1{pt(r)}, (2)

where S(q) is the observed signal at q (an experimental pa-

rameter) and pt(r) is the PDF that a spin moves a distance

of r in time t. Typically, the sampling locations are regularly

spaced in q (with fixed t), and a discrete Fourier transform is

used to recover pt(r) under the assumption that the PDF is

sufficiently band limited.

The attenuation signal was modeled as a positive mixture

of Gaussian distributions restricted to a physically realistic

range of diffusivities (3 × 10−5 to 3 × 10−3 mm2/s). The

number of Gaussian components was determined for each

voxel with sequential search using an L-curve criterion on

log-likelihood. To maintain a non-parametric approach, the

number of mixtures was intentionally selected higher than

would be indicated by a Bayesian information theoretic cri-

teria. Huberization (truncation) of the likelihood measure re-

duced the impact of artifacts; the truncation point was adap-

tively determined from the data. To regularize the estimate,

a Gaussian Bayesian prior was placed on the noise level with

a mean of the initial estimate (σ̂0) and ten percent standard

deviation. The optimal solution was numerically found by a

coordinate descent Nelder-Mead simplex algorithm[4]. For a

mixture of j components, the objective function was

{N̂1...j} = argmax
N1...j ,σ

L∗(S(q1...N ));N1...j , σ), (3)

where S(qi) are the observations at N q-values and Nj is a

zero mean Gaussian with restricted variance. The robust like-

lihood (L∗) incorporated Huberization (H) and a Bayesian

prior with the traditional likelihood (L) of each observation

under a Rician noise model (Eq.1),

L∗(S(q1...N ; •)) = p(σ; σ̂0)
N∏

i=1

H(L(S(qi); •)). (4)

The search was initialized with a minimum mean squared er-

ror solution and a spatially varying noise level estimate using

the method presented in [4] where a robust Qn scale metric

was used in place of the sample standard deviation [7].

The mixture model provides analytic representations of

the attenuation signals, so PDF’s may be recovered without

use of the discrete Fourier transform. Note that the inverse

Fourier transform of a positive mixture of zero-mean Gaus-

sians is also a positive mixture of zero-mean Gaussians. Thus,

the estimated PDF’s are guaranteed to be monotonically de-

creasing, strictly positive, and symmetric, which is in accor-

dance with physical principles. Since the Fourier transform is

linear, estimated ML attenuation signals represent ML PDF’s.

3. SIMULATIONS

Simulations were performed with two-component exponen-

tial mixtures (with diffusivities drawn at random from 3 ×
10−5 to 3× 10−3 mm2/s) (Fig. 2). Each simulation consisted

of two repetitions of 32 data points that linearly spanned the

signal decay curve from q=0 to 400 cm−1 at an SNR of 7:1

on the q=0 images. The SNR on other DW images is variable

and depends on signal attenuation. For comparison, a tradi-

tional two compartment bi-Gaussian (Bi-Gaus) method was

implemented that discarded all data with intensity less than

the noise level.

QEMRL reduced the median MSE on the estimated PDF

by 95% (25th-75th quantiles: 78-99%) compared to the Bi-

Gaus method. For simulations that used low diffusivities (rep-

resentative of WM, Fig. 2A), QEMRL offered less of an im-

provement over Bi-Exp (21%), which is to be expected as the
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bi-exponential model contains a parsimonious representation

of the truth model when little Rician bias is present. However,

for simulations that used high diffusivities (representative of

GM, Fig. 2B), QEMRL was able to more accurately account

for the bias due to the “noise floor” and offered substantial

improvements (98%).

4. IN VIVO EXPERIMENTS

The QEMRL technique was studied in the in vivo human

spinal cord. Four repetitions of a standard q-space proto-

col were acquired for a healthy volunteer on a 3T Philips

MR scanner. Thirty axial slices were acquired perpendic-

ular to the long axis of the spinal cord covering C2 to C6

(1.3x1.3x3.0 mm, FOV=84x84x90 mm, matrix=64x64, 32

linearly spaced q-values from 0 to 414 cm−1) with single-

shot EPI (SENSE=1.8, TR/TE=7000/106 ms). To improve

SNR and mitigate the impacts of artifacts, each DW image

was collected with diffusion weighting along two orthogonal

directions ([Gx, Gy, Gz]=[1,1,0] and [1,-1,0]) with a total

acquisition time of ∼10 min. The SNR was ∼7:1 on the

q=0 images. A second control and one patient with MS were

each scanned once with a similar q-space protocol (TE=112

ms, FOV=62x62x90 mm, matrix=48x48). Structural images

were acquired for lesion identification (spin density/T2*w

3D-GRE with three-shot EPI, SENSE=2). Informed writ-

ten consent and local institution review board approval were

obtained prior to study.

In the scan-rescan dataset, QEMRL reduced the mean

variability of estimated PDF’s within the spinal cord by 30%

over the Bi-Gaus method. The adaptive model order selec-

tion procedure identified 3.6 ± 1.1 mixture compartments

per voxel within the spinal cord. QEMRL more clearly re-

vealed GM/WM contrast in the cervical spinal cord in the P0,

FWHM, and RMSD contrasts (Fig. 3).

Results for a representative slice for the healthy control

(Fig. 4) show that PDF’s in WM are tall and narrow, whereas

PDF’s in GM are low and broad. Results are also shown for

the MS patient with lesions in the lateral columns (hyperin-

tense on the T2*w GRE, not shown). MS lesions show abnor-

mal height and shape of PDF’s; however, quantitative analy-

sis of the PDF’s is complicated by the high dimensionality.

To address this complexity, the PDF shape is often summa-

rized by the P0 and FWHM properties, however, this fails to

describe the extent to which the observed PDF is truly non-

Gaussian. Analysis of the RMSD captures information relat-

ing to the heavy tails.

These contrasts may be fused into a color image that im-

parts greater information about the PDF than any single con-

trast (Fig. 4 top row: red corresponds to P0, green to FWHM,

and blue to RMSD). With this visualization technique, the dif-

ferences between narrow and wide PDF’s and the presence of

heavy tails can be readily appreciated. P0 is most sensitive

to strongly peaked PDF’s which are indicative of highly re-

Fig. 2. Two compartment (bi-Gaussian) simulations demon-

strate that QEMRL slightly improves performance for white

matter (A) and greatly improves performance for gray matter

(B). QEMRL estimates show much less bias towards artifac-

tual sharpening of broad PDF’s than a traditional approach.

Fig. 3. QEMRL increases contrast between the gray matter

horns (GH) and the spinal cord white matter, include the lat-

eral (LC), dorsal (DC), and ventral (VC) columns.
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Fig. 4. Slices at the level of C4 are shown for a control (left)

and a MS patient with a LC lesion (center). Mean PDF’s

within the indicated regions are presented at right.

stricted diffusion environments, such as in WM. FWHM tends

to measure the width of the primary lobe, so a high FWHM

indicates a weakly restricted diffusion environment. RMSD

is also sensitive to weakly restricted environments, but places

more emphasis on the tails of the distribution. In the multi-

spectral images for the control, WM columns are primarily

red/magenta, indicating peaked PDF’s with narrow FWHM

and RMSD. The central areas of the GM horns are green/teal,

indicating a high FWHM, but a low RMSD. The dorso-lateral

GM horns demonstrate a purple or light blue color, which in-

dicate both a high FWHM and high RMSD. The purple hue

appears to point out the transition between the dorsal and lat-

eral columns in the control. These features may also be used

to observe the regional extent of the MS lesions. The large

lateral column lesions reduce P0 and increase FWHM (a de-

crease in the purple color) near the lesion boundaries.

5. DISCUSSION

Through improved estimation, QEMRL permits the wealth

of information in diffusion PDF’s to be more fully explored

and utilized to assess microstructure in both healthy and dis-

eased tissue. QEMRL improves the accuracy and reliability

of PDF’s derived from q-space by accounting for the Rician

noise properties in magnitude images. Specifically, while the

Rician bias at low SNR causes the PDF’s computed with the

Bi-Exp method to be artificially narrow (Fig. 2), QEMRL

produces PDF’s that more closely resemble the true PDF. Out-

lier rejection and stable numerical optimization reduce the im-

pact of imaging artifacts and result in increased empirical q-

space PDF reliability. Incidentally, QEMRL estimates a pro-

jection of PDF’s onto a finite basis set, which has a physical

interpretation as the mixture of diffusion compartments and

may be useful as a biomarker for micro-structural changes.

For example, the GM heterogeneity in the RMSD images seen

in the posterior dorsal horns compared to the dorso-lateral an-

terior horn would not be apparent if the RMSD were derived

from the FWHM (Fig. 3). With QEMRL, future studies may

employ measures of Gaussianity beyond RMSD, such as kur-

tosis. These contrasts may be indicative of cytoarchitecture

and structure within the GM, for example, due to differing

WM concentrations related to merging of the dorsal root col-

laterals. Additionally, analysis of q-space data with QEMRL

improves reliability of estimation process, which may allow

acquisition at higher spatial resolution images that provide

contrasts at an equivalent SNR to current techniques.

PDF’s for water diffusion can be measured in vivo in the

spinal cord, and are sensitive to tissue damage caused by MS.

These PDF’s contain a wealth of information (beyond the typ-

ically reported P0 and FWHM) and reveal interesting and sub-

tle properties of the biophysical diffusion restriction environ-

ment. There is visual and quantitative heterogeneity in the

spinal cord, which may be indicative of substructure within

WM and GM. Further histological and theoretical validation

will be necessary to determine if it is possible to attribute spe-

cific observations of PDF’s to intra-voxel compartments (i.e.,

substructural differences) or to partial volume effects (i.e.,

mixtures of WM and GM within voxels).

6. REFERENCES

[1] Y. Cohen and Y. Assaf, “High b-value q-space analyzed

diffusion-weighted MRS and MRI in neuronal tissues -

a technical review,” NMR Biomed, vol. 15, pp. 516–42,

2002.

[2] H. Gudbjartsson and S. Patz, “The Rician distribution of

noisy MRI data,” Magn Reson Med, vol. 34, pp. 910–4,

1995.

[3] J. Sijbers and A. J. den Dekker, “Maximum likelihood

estimation of signal amplitude and noise variance from

MR data,” Magn Reson Med, vol. 51, pp. 586–94, 2004.

[4] B. Landman, P-L. Bazin, and J. L. Prince, “Diffusion

tensor estimation by maximizing Rician likelihood,” in

MMBIA, Rio de Janeiro, Brazil, 2007.

[5] T. Niendorf, R. M. Dijkhuizen, D. G. Norris, M. van

Lookeren Campagne, and K. Nicolay, “Biexponential

diffusion attenuation in various states of brain tissue: im-

plications for diffusion-weighted imaging,” Magn Reson
Med, vol. 36, pp. 847–57, 1996.

[6] J.A. Farrell, S.A. Smith, E. Gordon-Lipkin, D.S. Reich,

P.A. Calabresi, and P. C.M. van Zijl, “q-space diffusion

weighted MRI of the human spinal cord in vivo,” in Pro-
ceedings of the ISMRM, Berlin, Germany, 2007, p. 270.

[7] P. J. Rousseeuw and C. Croux, “Alternatives to the me-

dian absolute deviation,” J. Amer. Statistical Assoc., vol.

88, pp. 1273–1283, 1993.

870


